渗透检测的优缺点
渗透检测的优缺点:
1、优点
(1)渗透检测可以检测(钢、耐热合金、铝合金、镁合金、铜合金)和非金属(陶瓷、塑料)工件的表面开口缺陷,例如,裂纹、疏松、气孔、夹渣、冷隔、折叠和氧化斑疤等。这些表面开口缺陷,特别是细微的表面开口缺陷,一般情况下,直接目视检查是难以发现的。
(2)渗透检测不受被控工件化学成分限制。渗透检测可以检查磁性材料,也可以检查非磁性材料;可以检查 黑色金属,也可以检查有色金属,还可以检查非金属。
(3)渗透检测不受被检工件结构限制。渗透检测可以检查焊接件或铸件,也可以检查压延件和锻件,还可以检查机械加工件。
(4)渗透检测不受缺陷形状(线性缺陷或体积型缺陷)、尺寸和方向的限制。只需要一次渗透检测,即可同时检查开口于表面的所有缺陷。
2、缺点
但是,渗透检测无法或难以检查多孔的材料,例如粉末冶金工件;也不适用于检查因外来因素造成开口或堵塞的缺陷,例如工件经喷丸处理或喷砂,则可能堵塞表面缺陷的“开口”,难以定量的控制检测操作质量,多凭检测人员的经验、认真程度和视力的敏锐程度。
渗透检测(penetranttesting,缩写符号为PT),又称渗透探伤,是一种以毛细作用原理为基础的检查表面开口缺陷的无损检测方法。
工作原理:
工件表面被施涂含有荧光染料或者着色染料的渗透剂后,在毛细作用下,经过一定时间,渗透剂可以渗入表面开口缺陷中;去除工作表面多余的渗透剂,经过干燥后,再在工件表面施涂吸附介质——显像剂;同样在毛细作用下,显像剂将吸引缺陷中的渗透剂,即渗透剂回渗到显像中;在一定的光源下(黑光或白光),缺陷处的渗透剂痕迹被显示(黄绿色荧光或鲜艳红色),从而探测出缺陷的形貌及分布状态。
适用范围及特点:
渗透检测可广泛应用于检测大部分的非吸收性物料的表面开口缺陷,如钢铁,有色金属,陶瓷及塑料等,对于形状复杂的缺陷也可一次性全面检测。主要用于裂纹、白点、疏松、夹杂物等缺陷的检测无需额外设备,对应用于现场检测来说,常使用便携式的灌装渗透检测剂,包括 渗透剂、清洗剂和显像剂这三个部份,便于现场使用。渗透检测的缺陷显示很直观,能大致确定缺陷的性质, 检测灵敏度较高,但检测速度慢,因使用的检测剂为化学试剂,对人的健康和环境有较大的影响。
渗透检测特别适合野外现场检测,因其可以不用水电。渗透检测虽然只能检测表面开口缺陷,但检测却不受工件 几何形状和缺陷方向的影响,只需要进行一次检测就可以完成对缺陷的检测。
网站渗透测试服务公司怎么选择,什么是渗透测试
网站渗透测试其实就是模拟黑客恶意攻击你的网站,找出一的网站漏洞,从而进行安全防御和维护的一种测试
再简单说,就是找网站bug
至于公司怎么选择,说实话,目前国内并没有什么特别牛特别专业的网站渗透测试公司,有一些黑客大拿技术很牛,但是都是比较小的圈子里面,这种人一般不会抛头露面,能不能找到看你资源和能力咯
另外,如果你的网站根本不是特别重要,特别秘密,只是一般的组织网站,企业网站,个人网站,根本用不着这种测试,黑客没空黑你的网站的!
二进制和渗透测试哪个的前景好一点
二进制安全是能涉及到安全原理的底层信息安全,因为比较偏重技术性,所以在安全领域里一直有着比较高的地位,但是也由于二进制安全的特殊性,让它比较小众,就业面比较窄。
用一句话来形容二进制安全的发展前景就是:人才稀缺,入门门槛高,就业面窄,专业人才待遇优厚且难以培养。
渗透测试技术是近几年兴起的一种安全性测试技术。是一个相对较新的研究领域,近几年在国际上得到较多的关注。相比于传统的安全性的测试技术,如端口扫描和漏洞扫描技术,渗透测试的测试深度更深,其结果对于被测系统的安全性的评估更有价值。越来越多的企业已经意识到这个问题并且注重渗透测试这个岗位的重要性。
渗透测试有前途吗
有。学习就好比工作一样。您要克服困难,敢于吃苦。那么做到这些,您也没有理由学不好。当然会发展出来属于你自己的命运和前途的!
在上汽通用做渗透测试怎么样?
渗透测试是通过模拟恶意黑客的攻击方法,来评估计算机网络系统安全的一种评估方法。这个过程包括对系统的任何弱点、技术缺陷或漏洞的主动分析,这个分析是从一个攻击者可能存在的位置来进行的,并且从这个位置有条件主动利用安全漏洞。
至于这个企业的岗位如何,可以去多了解打听一下情况,或者直接到公司里面面试体验一下。
国内外研究现状
1.2.1 元素硫溶解度及沉积运移实验研究现状
(1)元素硫溶解度研究现状
对高含硫天然气中元素硫溶解度的认识是该类气藏开发过程中重要的环节之一。国内外对该问题进行了深入的研究。硫溶解度的研究主要包括实验和理论两个部分,以下为实验部分。
1960年,Kennedy[7]等人研究了硫在不同含量的CH4、CO2和H2S三种气体中的平衡溶解问题。并且首次说明了硫的溶解性能与气体压力、温度和组分有关。在一定温度压力的条件下,其溶解能力大小依次为H2S、CO2、CH4。
1971年,Roof[8]通过实验研究了低温低压条件下硫在硫化氢气体中的溶解度(压力6.8~30.6MPa,温度43.3℃~114℃)。
1976年,为了更好地研究深层气藏的高温高压条件下硫在酸性气体中的溶解度,Swift[9]进行了溶解度实验研究(压力34.5 MPa~138 MPa,温度121℃~204℃)。
1980年和1988年,E.Brunner[10~11]等人将Kennedy等人研究进行推广(压力6.6MPa ~155MPa,温度116℃~213℃),研究了硫在不同比例的CO2、H2S、C1~C4的14个合成酸性气体混合物中的溶解度。
1992年和1993年,P.M.Davis[12]等人将E.Brunner等人的研究成果进行了深入研究(压力7 MPa~55MPa,温度60℃~150℃),将硫在简单多组分中的溶解扩展到实际的酸气组分中。
1993年,谷明星[13~14]等人建立了静态法测定难挥发溶质(固体或液体)在超临界、近临界流体中溶解度的实验装置,针对硫化氢大于50%的富含H2S酸性流体溶解度进行了测试。
2003年,C.Y.Sun[15]在谷明星实验研究的基础上,在室内利用静态实验测试装置完成了元素硫在7个高含硫混合气体(H2S CO2、CH4)中溶解度测定,并建立了能预测和关联硫在高含硫天然气中溶解度的气固热力学模型。
2005年,曾平[16~17]对元素硫在天然气中的溶解度进行了实验研究,并对其机理进行了说明,分析了不同组分对元素硫溶解度的影响,提出混合物中含碳原子数目较多的烃类组分对硫溶解度有着重要的影响。
2009年,杨学锋[18]通过自主设计的元素硫溶解度实验设备,针对Chrasnti[19]和Roberts[20]常系数模型进行了关联性研究,发现Chrasnti l溶解度计算模型更加科学可靠; 而Roberts溶解度模型,由于是根据有限特定的几组数据拟合得到,具有一定的局限性。
由于硫在含硫混合气中溶解度测试具有一定的危险性,故为了更好的得到硫在含硫混合气中的溶解度,国内外学者在理论模型方面也做了很多深入的研究。
1980年和1983年,J.B.Hyne[21~22]等人研究发现随着温度压力的升高,元素硫和硫化氢会生成多硫化氢。反之,随着温度压力的降低,多硫化氢又会分解成为元素硫和硫化氢,从而导致硫沉积。
1982年,Chrastil[19]基于理想溶液理论,提出了一个简化的热力学方程来计算硫的溶解度。该经验公式已经广泛用于超临界流体溶质溶解度的计算。
1989年,R.A.Tamxej[23]等人在对大量实验数据进行拟合的基础上,得到了元素硫在含硫气体中溶解度的预测模型。
1997年,E.Bruce[20]等人利用Brunner[10]和Woll的实验数据,对Chrastil经验公式进行了回归拟合,建立了元素硫在酸性气体中的溶解度经验公式,该公式考虑了温度、压力和气体组分对元素硫溶解度的影响,因为方便应用,故一直被用于预测元素硫在含硫天然气中的溶解度。
1998年,Kunal Karan[24]等人建立一个热动态模型,可用于预测酸气混合气体中硫溶解度,并利用该模型计算了元素硫在硫化氢和高含硫气体混合物中的溶解度。
2003年,C.Y.Sun[15]等人采用与谷明星类似的方法,建立了能够预测和关联元素硫在高含硫天然混合气中溶解度的气固热力学模型。
2006年,杨学锋[25]引入了超临界流体的压缩气体模型,建立了元素硫和高含硫天然气达到气固相平衡时定量计算元素硫溶解度的关联和预测模型。
(2)元素硫沉积运移实验研究现状
随着温度压力的降低,元素硫会从含硫天然气中析出,部分硫颗粒将会沉降,部分硫颗粒则会随储层流体运移。
目前,元素硫沉积实验主要集中在油藏方面[27~29],由于硫化氢的剧毒性,开展高含硫元素硫沉积储层伤害的实验极少。
2000年,Jamal H.Abou-Kassem[30]利用氮气携带升华的元素硫进入碳酸岩岩心,观察和测定了元素硫对岩心的伤害。提出了一种简易的方法来模拟实际高含硫气藏元素硫对储层的伤害,但由于元素硫升华的温度极高,对其实验及数据的可行性值得深入探讨。
2008年,西南油气田分公司勘探开发研究院[31 ]自主研制了模拟实际储层高温高压的条件下,元素硫沉积对储层伤害驱替实验仪器,完成了不同初始压力、温度下元素硫对天然碳酸盐岩岩心渗透率和孔隙度的伤害。
1.2.2 含硫气藏储层改造铁离子伤害研究现状
储层改造作为低渗透油气藏重要的增产措施已经得到了广泛的认可,目前含硫气藏也通常进行酸压改造增产作业。由于含硫气藏涉及元素硫沉积和酸性气体等因素,对其储层改造必要性的探讨还存在空白。
考虑到元素硫沉积和酸性气体的影响,含硫气藏储层改造的核心就是控硫控铁。在处理含硫化氢气井的储层改造问题上,国内外主要集中在控制铁沉积上[32~37]。在酸压作业中,对于控制铁离子沉淀,通常有三种方法:
一是对主体工作液进行研究,采用弱酸体系来控制残酸液的pH值,使得残酸pH值处于一个相对较低的位置,以便于抑制残液中析出含铁的硫化物。
二是采用铁离子络合剂。由于络合剂对高价的金属离子具有较强的亲和力,从而使得溶液中铁离子浓度低于析出沉淀的浓度,从而抑制铁离子沉积的产生。
三是采用还原剂,将溶液中的三价铁离子还原成为二价铁离子,从而达到避免沉淀析出的目的。
2004年,陈红军[38]等人对于含硫化氢气井酸化过程中,硫化铁沉淀预测及抑制剂研究进行了详细的调研和研究,并提出了一套适应含硫气井酸压作业且与之匹配的添加剂,优化了酸液体系的整体性能,其具体表现为铁离子稳定剂、硫化氢吸收剂和控硫剂。
2007年,Jairo Leal[39]等人在分析了在对解除硫化铁沉积过程中可能会出现的问题,提出了一系统有序的方法来对硫化铁沉淀进行移除。
2009年,Tao Chen[40]等人建立了一套新的硫化铁测试方法来评价硫化铁抑制剂的性能。在此基础上,研制了一种新的抑制剂并对硫化铁抑制剂机理进行了说明。
1.2.3 元素硫沉积对储层伤害研究现状
为了研究地层条件下元素硫沉积对储层的伤害,国内外学者分别建立了考虑元素硫伤害的含硫气藏伤害模型,分析元素硫沉积对储层参数及产能的影响。
1966年,C.H.Kuo[41]建立流体流动数学模型,该模型能够描述多孔介质中固相沉积。该模型假设初始状态含硫天然气饱和溶解元素硫。
1972年,C.H.Kuo[42]将硫沉积模型引入,在黑油模型的基础上,建立元素硫沉积的储层伤害数学模型,该模型考虑了硫溶解度的变化和硫沉积对渗透率和孔隙度的影响。该模型能够模拟均质气藏一维径向流动情况下,采气速度、井距和井筒半径对硫沉积的影响。
1980年,J.B.Hyne[21]等人通过统计学原理,分析了100多口含硫气井的元素硫沉积问题,分析了混合物中不同碳原子数、CO2、硫化氢含量对元素硫沉积的影响。
1997年,E.Boberts[20]在等温稳态理想流动的条件下,研究了酸性气井中元素硫沉积对流人动态的影响,建立了考虑元素硫沉积储层伤害模型,分析了不同时间,不同径向距离处元素硫饱和度的分布。发现硫的聚集速度与径向距离平方成反比,径向距离小,元素硫沉降距离的越快。同时还考虑表皮的影响,表皮越小,硫的聚集速度越小,但该模型假设元素硫析出就地沉降,没有考虑元素硫运移。
1997年,王琛[43]在Roberts建立的理论基础上,研究了硫沉积对气井产能的影响及各因素对硫沉积的影响。
2001年,Faruk Civan[44]将延迟效应引入到元素硫沉积里面,考虑元素硫动态沉积,即元素硫析出后不会就地沉降,而是运移一段时间或位移后再沉降。但并没有说明元素硫何时沉降,运移多长时间和位移。
2002年,Nicholas Hands[45]等建立了天然裂缝性含硫气藏硫沉积预测解析模型,该模型考虑了温度和近井地带的气流临界流速的影响,对元素硫在近井地带的分布进行了分区和详细地研究,并给出了相应的井底除硫时间,但对于元素硫颗粒临界流速计算并没有给出具体计算方法。
2004年,杨满平[46]考虑非达西渗流的影响,建立了高含硫气藏元素硫沉积模型。该模型在完善硫沉积伤害模型基础上,对比了考虑非达西和达西流动下,不同径向距离,不同时间元素硫饱和度随时间的变化关系,同时还分析了产能对硫颗粒沉积堵塞的影响。
2005年,曾平[47]就高含硫气藏渗流规律进行了研究,得到孔隙度,渗透率随时间的变化关系,进一步完善了考虑非达西影响的元素硫沉积伤害模型。
2006年,杨学锋[48]在Faruk Civan建立的模型基础上,考虑元素硫沉积的延迟效应,完善了元素硫动态沉积预测模型。
2006年,H.Mei[49]等人在Roberts建立伤害模型基础上,根据实际井参数,建立了无阻流量与渗透率和储层厚度之间的关系。
2006年,Du Zhi-Ming[50]等人建立了裂缝性气藏气液固三相耦合数学模型,并利用Roberts实例井数据进行计算,同时进行了结果对比分析。
2006年,Guo Xiao[51]等人将气液固三相耦合模型与硫沉积实验相对比,分析了流速,初始硫浓度和岩心渗透率对元素硫沉积的影响。
2007年,Guo Xiao[52]等人基于组分模型和相平衡原理建立了气液固三相数学模型,该模型可用于预测元素硫沉积,并提出需要进行储层解堵时间。
1.2.4 考虑元素硫沉积的产能方程及物质平衡方程研究现状
由于压力降最快的地方在近井地带,导致元素硫析出最快的地方聚集在近井地带,从而使得常规的产能方程需要进一步考虑元素硫沉积的影响。含硫气藏开发过程中元素硫沉积而导致试井曲线发生变化,对此学者们也进行了相应的研究。
2005年,李成勇[53]等人进行了高含硫气藏解释方法研究,建立了高含硫气藏两区复合试井模型,并用Stehfest反演算法对井底压力响应典型曲线进行了计算,分析了污染半径和流度比对井底压力动态的影响。
2007年,段永刚[54]等人建立了基于含硫气藏与井筒耦合的非稳态产能预测新方法,该方法为没有试采资料的气井合理配产提供了一种方法。
2008年,张烈辉[55]等人基于渗流力学相关理论,对高含硫气藏的渗流模式进行了分析,建立了考虑附加表皮的复合渗流模型与产能试井解释数学模型。
2009年,晏中平[56]等人在现代试井解释方法和油气渗流理论基础上,建立了考虑含硫气井硫污染区和未污染区两区双孔介质复合试井解释数学模型,并利用Stehfest反演算法对井底压力响应典型曲线进行了计算,同时完成了多参数对井底压力的敏感性分析。
随着高含硫气藏的开发,储层压力会不断降低,析出的元素硫将会占据储层部分孔隙空间,使得在建立含硫气藏物质平衡方程的时候,体积平衡方程发生了变化。
1936年,R.J.Schilthuis[57]根据物质平衡原理首先建立了油藏的物质平衡方程式,因为该方法需要的相关地质及流体生产数据较少,同时计算方法相对简单,故一直在油藏工程中得到广泛使用。
国内的陈元千[58~60]等人在物质平衡原理的基础上建立了气藏的物质平衡方程,并完善了不同类型的气藏物质平衡方程式。
在凝析气藏物质平衡方程式的问题上,国内的马永详[61~62]利用摩尔平衡原理对凝析气藏物质平衡方程进行了研讨。
2006年,张勇[63]等人给出了高含硫气藏物质平衡方程的推导,该模型考虑了元素硫沉积的影响,但仅仅是基于体积平衡原理,没有考虑元素硫的析出会导致混合天然气密度发生变化。
2008年,卞小强[64]考虑了元素硫析出后,会使得天然气密度发生变化,必须使用质量平衡原理来建立含硫气藏物质平衡方程,故其利用摩尔平衡原理建立了气藏物质平衡方程,并进行了实例计算,但在建立物质平衡时,由于对元素硫产生的机理认识不足,使得摩尔平衡原理建立的方程求解具有一定难度。
0条大神的评论